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Abstract. We report direct numerical magnetohydrodynamic simulations at
low magnetic Prandtl numbers of a turbulent two-cell flow in a bounded,
spherical geometry, driven by a constant body force. The flow amplifies
infinitesimal magnetic perturbations if the magnetic Reynolds number Rm is
larger than a threshold Rmc, resulting in a self-excited equatorial magnetic
dipole. However, finite amplitude perturbations to the magnetic field can trigger
dynamo action below Rmc: a hysteresis cycle has been found that can sustain
dynamo action in an interval Rm0 < Rm < Rmc. The instability is therefore
governed by a subcritical bifurcation. This hysteretic behaviour is associated
with changes in the turbulent velocity field caused by the finite amplitude
magnetic field. It is then shown that the dynamo state can be accessed by
transiently applying a magnetic field from an external source. Finally, a dynamo
state with characteristics different from the self-excited case is found in the
vicinity of Rm0.
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1. Introduction

The dynamo process is commonly accepted to be the cause of the magnetic fields observed in
planets, stars, galaxies and galaxy clusters [1]–[3]. Dynamo theory explains the amplification
of magnetic fields as an instability which occurs in flows of electrically conducting fluids like
liquid metals or plasmas [4, 5]. During the last decade, experimental dynamos using liquid
sodium were successfully realized in the laboratory [6]–[10]. Both in nature and in recent
dynamo experiments, those flows are highly turbulent.

Dynamo action is possible if a nonzero seed magnetic field is present and the induction
from flow can overcome ohmic dissipation, i.e. if the magnetic Reynolds number is larger than
a certain, critical value Rmc [4]. Then, the system may undergo a transition to an unstable state
with growing magnetic eigenmodes. The dynamo threshold Rmc has been shown to depend on
the strength of turbulence, quantified by the fluid Reynolds number Re (see, for example, [11,
12]). From the point of view of stability theory [13], the transition to self-excitation in the
presence of an infinitesimal seed magnetic field is supercritical in dynamo experiments and in
most models, resulting in a unique, flow-dependent critical magnetic Reynolds number [14].
However, it is also possible that the dynamo transition can be subcritical; a finite (growing)
magnetic field might reduce the hydrodynamic turbulent fluctuations and thus sustains dynamo
action for magnetic Reynolds numbers Rm with Rm0 < Rm < Rmc [14]. Subcriticality in
numerical magnetohydrodynamic (MHD), dynamos was most recently reported for a turbulent
flow using a Taylor–Green (TG) forcing [14] (cf also the references therein), and for Keplerian
shear flows [15]. However, there are significant differences between the two models which
are noteworthy here. In the first case [14], there is a finite Rmc above which the system
becomes linearly unstable with respect to infinitesimal magnetic perturbations; subcriticality
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in this context means that a finite amplitude magnetic disturbance causes dynamo action to
occur below Rmc, mediated by nonlinear effects of the Lorentz force on the flow. In the second
case [15], the system is linearly stable. The nonnormality of the linear operator in the induction
equation may cause transient field growth which eventually must decay in the absence of a
nonlinearity. However, if the transiently growing field is strong enough in the presence of the
nonlinearity, the latter may become non-negligible and trigger a self-excitation process. There
is no kinematic regime, as the system bifurcates under finite amplitude magnetic perturbations
‘from infinity,’ and is thus subcritical. Subcriticality associated with hysteresis cycles has also
been studied in the hydrodynamic context, e.g. in a von Kármán-type experimental swirling flow
[16]. Furthermore, subcriticality was studied in numerical models of the geodynamo. Utilizing
the fact that these rotating convective dynamos often have axial dipolar solutions, runs were
initialized with dipolar magnetic field components to save computing time [17].

In this work, we numerically study the nature of the dynamo bifurcation of a turbulent
two-cell flow within a sphere, driven by a constant body force. In section 2, the numerical
model is presented. In section 3, the system’s hysteretic behaviour is explored by increasing
the magnetic diffusivity during the stationary state of a self-excited dynamo (decreasing the
magnetic Reynolds number below Rmc). This follows and extends the recent results found in
unbounded TG flow in an infinite, periodic box [14]. Three series of runs at different Reynolds
numbers are reported. Then, the flow is studied in the presence of applied magnetic fields of
finite amplitude. Section 4 discusses the hysteretic behaviour, identifying a global subcritical
bifurcation. The magnetic and velocity fields are analysed by means of visualization and spectral
analysis. A comparison is drawn with the TG dynamo, which has been discussed in several
publications. The paper closes with a summary in section 5.

2. Model equations

In the case of an incompressible conducting fluid, the magnetic (B) and velocity (v) fields are
governed by the equations of incompressible MHD:

∂B
∂t

= ∇ × (v × B) + λ∇
2B, (1)

∂v
∂t

+ (v · ∇) v = j × B + ν∇
2v − ∇ p + F, (2)

∇ · B = 0, (3)

∇ · v = 0. (4)

Here, λ is the magnetic diffusivity, j = µ−1
0 ∇ × B is the current density, ν is the viscosity,

p is the pressure and F is a forcing term. A constant mass density ρ = 1 is assumed.
In nondimensional units, the problem is characterized by two control parameters, the
Reynolds number Re = LV ν−1 and the magnetic Reynolds number Rm = LV λ−1, which
quantify the ratio of advection to viscous dissipation and the ratio of induction to ohmic
dissipation, respectively. The variables L and V denote the length and velocity scales, which
are characteristic of the system under consideration. The magnetic Prandtl number Pm =

Rm/Re = ν/λ quantifies the ratio of viscous to ohmic dissipation.
We use the parallel Dynamo code to simultaneously solve (1)–(4) in a bounded, spherical

geometry [12, 18]. The code employs a standard pseudo-spectral method based on vector
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spherical harmonics. The driving is implemented as a constant body force F, designed to
produce a flow consisting of two counter-rotating cells with a topology similar to that of the
flow in the Madison dynamo experiment [12], [19]–[22]. In a centred, cylindrical coordinate
system (ρ, φ, z), where the z-axis corresponds to the straight line defined by (θ = 0) in spherical
coordinates, the body force reads

Fρ = 0, Fφ = εsgn(z)ρ3r−3
d sin

πρ

2rd
+ γ, Fz = (1 − ε)sgn(z) sin

πρ

rd
+ δ. (5)

Assuming a sphere of radius r = 1, the driving is applied within the region 0.25 < |z| < 0.55,
ρ < rd = 0.29. The parameters were kept constant at ε = 0.1, γ = 0.05 and δ = 0.3. Due to the
dominant spectral components of the resulting velocity field, the flow is commonly referred
to as a s2t2 flow. The origin is resolved, and boundary conditions at the wall are a zero-slip
condition for the velocity field, and a potential field for the magnetic field, assuming the outside
of the spherical domain to be current free. Similar, analytically constructed, time-independent
flows, were studied kinematically in [23].

In the simulation code, the time variable is normalized to a characteristic timescale of
the magnetic field, which is the resistive diffusion time, τσ = µ0σr 2. The relation to one
eddy turnover time τν , which is a characteristic hydrodynamic timescale, is given by τν =

Rm−1τσ . Hence, in the regime Rm > 100, where the runs presented below were performed,
the hydrodynamic timescale is faster than the magnetic timescale by two orders of magnitude.
We set the characteristic length scale L equal to the radius r of the sphere, which is unity in
our simulations. Following an established convention, the characteristic velocity is chosen as

the time-averaged rms velocity V =
√

〈|v|2〉, where the overbar denotes temporal and the 〈·〉

operator denotes spatial averaging. The time averaging is performed during the kinematic phase
of a run, i.e. when the backreaction of the magnetic field on the flow is negligible.

The numerical resolution used in the simulations is characterized by the number of radial
grid points nr in physical space and the maximum degree nl above which the spherical harmonic
expansions are truncated. To assure dealiasing, the number of angular points is chosen as
nθ = 3/2nl and nφ = 3nl. Since finite differences are used in radial direction, the value of nr

is required to exceed nl by a factor of 4 for reasons of accuracy. In addition, the radial domain
decomposition used in our parallel code requires nr to be divisible without remainder by the
number of processors. Two methods are simultaneously used to monitor a run. Firstly, the power
balances obtained from the induction and momentum equations (1) and (2) are calculated and
required to deviate by less than 1%. Secondly, the kinetic and magnetic spectral energies in
terms of the degree l are required to drop at least by a factor of 100 from their maxima (in our
model typically found at l = 2 and l = 1, respectively) to the cut-off nl . This rule is known from
geodynamo simulations which use very similar numerical methods [17]. In the following, the
resolutions are given at the beginning of sections 3.1–3.3, where three series of runs at different
Reynolds numbers are presented. In addition, a convergence check of the runs at the largest
Reynolds number is given in section 3.5. Spectra are presented in section 4.2.

3. Hysteretic behaviour of the turbulent s2t2 dynamo

Previously, the stability of an electrically conducting, turbulent s2t2 flow under infinitesimal
magnetic perturbations was studied numerically [12, 24]. In the computationally accessible
regime, the stability curve Rmc was determined as a function of the Reynolds number Re. It
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Table 1. Series A: simulations performed at Re = 770. Unquenched runs are
marked with an asterisk. Run A8∗ provides the initial conditions for the quenched
runs A0–A7. The following variables were determined during the statistically
stationary state reached after a short transient: Emag and Ekin are the time-
averaged magnetic and kinetic energies, B is the magnetic field amplitude, δ and
δ2 are measures of the intensity of turbulent fluctuations of B and V , as defined
in (7).

Run Rm Emag Ekin Emag/Ekin B δ(B) δ2(B) δ(v) δ2(v)

A0 86 0.00 0.76 0.00 0.00 – – 1.34 0.25
A1 88 0.09 0.56 0.15 0.42 10.23 0.86 1.30 0.45
A2 89 0.11 0.51 0.22 0.47 5.29 0.71 1.36 0.55
A3 90 0.21 0.31 0.70 0.65 1.25 0.25 1.21 0.61
A4 107 0.23 0.28 0.84 0.68 1.86 0.36 1.33 0.77
A5 128 0.25 0.28 0.87 0.70 2.42 0.42 1.46 0.95
A5∗ 128 0.00 0.76 0.00 0.00 – – 1.35 0.24
A6 150 0.29 0.25 1.15 0.76 2.11 0.51 1.37 0.84
A7 171 0.30 0.25 1.22 0.78 2.06 0.40 1.37 0.68
A7∗ 171 0.00 0.76 0.00 0.00 – – 1.35 0.24
A8∗ 214 0.33 0.25 1.30 0.81 1.47 0.40 1.38 0.56

was found that Rmc rises linearly with Re. Furthermore, the results of ongoing work indicate
that Rmc flattens at higher Re. A detailed report will be published elsewhere. The stability
curve is in qualitative agreement with several numerical studies on mean-field and small-scale
dynamos performed in infinite periodic boxes (for more details, see, e.g. [11], [25]–[29]).

In the present paper, we address the nature of the dynamo transition by suddenly increasing
the magnetic diffusivity thereby reducing (‘quenching’) the magnetic Reynolds number below
Rmc during the saturated phase of a dynamo that initially has Rm > Rmc. This procedure is
repeated for multiple Rm values at three different Reynolds numbers. The corresponding runs
are summarized in the following three sections. In addition, we study the behaviour of the
system at Rm < Rmc in the presence of externally applied magnetic fields in section 3.4. A
convergence check is presented in section 3.5. A discussion of the observed effects follows in
section 4.

3.1. Runs at Re = 770 (series A)

A series (referred to as series ‘A’) of dynamo simulations at different Rm, but with Re = 770
held fixed is summarized in table 1. No external field was applied. The grid resolution is
nr = 480 and nl = 25. A convergence check is presented in section 3.5.

Time traces of kinetic and magnetic energies for a subset of the runs are presented in
figure 1. Since the magnetic Reynolds number was changed during some of those runs, the
time variable is given in λ-independent units of eddy turnover times, τν = Rm−1τσ . Each of
the runs was continued for several magnetic diffusion times after the quenching was applied.
Run A8∗, performed at Rm = 214 and shown in panel (a), is a standard dynamo transition in
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Figure 1. Time traces of kinetic and magnetic energies from a subset of runs
at Re = 770. (a) A run is started at t = 0 with Rm = 214 (A8∗). During the
kinematic phase, the magnetic energy grows exponentially. Starting from t ≈

775, the magnetic field is strong enough to react back on the velocity field. In
the following, nonlinear saturation occurs. At t = 892, the dynamo is quenched
to Rm = 86, its positive feedback mechanism breaks down, and the magnetic
field energy decays exponentially. (b) Starting from the saturated run A8∗, the
magnetic Reynolds number is reduced to Rm = 88 (A1). The dynamo action
persists, the system reaches a new quasi-stationary state. (c)–(e) The dynamo is
quenched to Rm = 89 (90 and 128) and Rm < Rmc. (f) For direct comparison
with case (e), the seed magnetic field decays in a run which is performed at
Rm = 128, starting at t = 0.
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Figure 2. Magnetic field amplitude B as a function of the magnetic Reynolds
number Rm for the runs in series A. The red (solid) dots denote the quenched
states, starting from the unquenched A8∗. For comparison, the green (open)
squares show unquenched runs below and above the dynamo threshold at
Rmc ≈ 200, the latter being indicated by the right vertical blue (dashed) line. A
hysteresis cycle in counterclockwise direction results. Furthermore, the critical
magnetic Reynolds number Rmc(V̄ ) ≈ 70 of the mean flow from run A5∗ is
shown by the left vertical blue (dashed) line.

which an infinitesimal seed magnetic field grows in time when Rm > Rmc. During the
kinematic phase, where the backreaction of the magnetic field is negligible, the magnetic field
grows exponentially after an initial transient. Starting from t ≈ 775, the magnetic field is strong
enough to affect the flow via the Lorentz force, leading to nonlinear saturation. The system
reaches a quasi-stationary state, which is visible in better detail in the left sections of panels
(b)–(e). At t = 892, the magnetic diffusivity of the fluid is suddenly increased, corresponding
to a decrease of the magnetic Reynolds number down to Rm = 86 (run A0), which is below the
dynamo threshold Rmc ≈ 200. As it is evident from the right section of panel (a), the dynamo
can no longer sustain its positive feedback loop. The magnetic energy decays exponentially.
Panels (b)–(e) show data from the runs A1–A3 and A5, where dynamo action persists after the
system was quenched to Rm = 88 (89, 90 and 128), Rm < Rmc. Panel (f) shows timetraces of
the kinetic and magnetic energies in run A5∗, which was performed at Rm = 128. For direct
comparison with case A5 no quenching was applied and the seed magnetic field decays.

In figure 2, the magnetic field amplitude B =

√
2Emag(t) during the quasi-stationary state

of the runs in series A is plotted as a function of the magnetic Reynolds number. Here, Emag(t)
is the time-averaged magnetic energy. The critical magnetic Reynolds number Rmc is also
indicated. It was determined via linear interpolation between the growth rate of a dynamo case
(Rm > Rmc), and the decay rate of a non-dynamo case (Rm < Rmc). Furthermore, we have
computed the mean flow

V(x) =
1

T

∫ t0+T

t0

v(x, t) dt, (6)
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Table 2. Series B: runs performed at Re = 410. Unquenched runs are marked
with an asterisk. Run B10∗ constitutes the initial condition for the quenched runs.

Run Rm Emag Ekin Emag/Ekin B

B0 59 0.00 0.71 0.00 0.00
B1 62 0.00 0.71 0.00 0.00
B2 64 0.07 0.57 0.13 0.38
B3 66 0.00 0.69 0.00 0.00
B4 67 0.10 0.47 0.22 0.45
B5 68 0.00 0.67 0.00 0.00
B6 70 0.14 0.38 0.37 0.53
B7 72 0.20 0.30 0.66 0.63
B8 82 0.23 0.21 1.07 0.68
B8∗ 82 0.00 0.73 0.00 0.00
B9∗ 90 0.24 0.21 1.14 0.69
B10∗ 103 0.25 0.21 1.20 0.71

from run A5∗. Here, T denotes an averaging time of several hundred eddy turnover times.
We have then used the mean flow in kinematic runs, i.e. integration of equation (1) only, to
determine its critical magnetic Reynolds number via the previously described interpolation
procedure. The resulting Rmc(V̄) ≈ 70 is included in figure 2 as well. Dynamo action is possible
in a window Rm0 < Rm < Rmc, with Rm0 ≈ 0.44Rmc. An analysis of the phenomena linked
to this hysteresis cycle is given in section 4.

3.2. Runs at Re = 410 (series B)

Since the turbulence strength influences the dynamo threshold Rmc in our system, we have also
performed simulations at lower Reynolds numbers compared with series A. Series B, a set of
runs at Re = 410, is summarized in table 2. The grid resolution is nr = 320 and nl = 25. Figure 3
shows the corresponding hysteresis cycle. The dynamo threshold in this case is Rmc ≈ 90 (run
B9∗ is a marginal self-excited dynamo), the critical magnetic Reynolds number of the mean
flow (obtained by time-averaging the velocity field during run B8∗) is Rmc(V̄ ) ≈ 59. As is
evident from the (red) solid dots in figure 3, quenched dynamos reach statistically stationary
states with finite amplitudes in the interval Rm0 ≈ 64 < Rm < Rmc. The width of the hysteresis
cycle is Rmc − Rm0 ≈ 26, with Rm0 ≈ 0.71Rmc. However, for Rm values near Rm0, two runs
(B2 and B4) show dynamo action, whereas simulations in the vicinity (B1, B3 and B5) have
a decaying magnetic field. In all cases, the time integration was performed at least over three
magnetic diffusion times. This ‘undecided’ behaviour between B2 and B6 in a narrow window
of 1Rm < 6 is probably caused by the fact that the temporal evolution of nonlinear systems
like the MHD dynamo is sensitive to infinitesimal changes of the initial conditions. As a result,
the lower limit of the hysteresis cycle may be defined as an interval rather than a value Rm0.

3.3. Runs at Re = 178 (series C)

A third series of runs (labelled ‘C’) was performed at Re = 178 and is summarized in table 3.
The numerical resolution is nr = 280 and nl = 20. The dynamo threshold at Re = 178 is Rmc ≈

45. The critical magnetic Reynolds number of the mean flow (obtained by time-averaging the
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Table 3. Overview of the runs performed at Re = 178 (‘series C’). The dynamo
run C3∗ constitutes the initial condition for the quenched runs.

Run Rm Emag Ekin Emag/Ekin B

C0 41 0.000 0.51 0.000 0.000
C1 43 0.002 0.52 0.003 0.057
C1∗ 43 0.000 0.53 0.000 0.000
C2/C2∗ 45 0.010 0.50 0.020 0.141
C3∗ 54 0.187 0.26 0.714 0.611
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Figure 3. Magnetic field amplitude B of the runs in series B. The red (solid)
dots denote the quenched states, starting from B10∗. Quenched runs below the
decaying run B5 are indicated by blue (solid) diamonds. For comparison, the
green (open) squares represent unquenched runs. The vertical blue dashed lines
indicate the critical magnetic Reynolds numbers of the time-dependent turbulent
flow, and of the mean flow V̄ computed from run B8∗, respectively.

velocity field of run C1∗) is Rmc(V̄ ) ≈ 50. As it is evident from table 3, the hysteresis cycle
is comparably narrow in this case. Starting from run C3∗, run C1 reaches a stationary state
with weak dynamo action at Rm = 43. At Rm = 45 (C2∗), the dynamo does self-excite from
an infinitesimal magnetic perturbation, whereas at Rm = 41 (C0), the magnetic field decays,
starting from finite amplitude. Thus, dynamo action after the quenching is only possible in a
narrow window with Rmc − Rm0 < 4.

3.4. Runs at Re = 770 with externally applied magnetic fields

In addition to the previously described quenched runs, we have performed simulations at
Re = 770 and Rm < Rmc in the presence of an applied m = 1 transverse magnetic field. The
numerical resolution is nr = 480 and nl = 25. In the simulations presented below, the applied
field is perpendicular to the axis of symmetry defined by the forcing, and therefore aligned with
the preferred magnetic mode of the system.
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Table 4. Overview of the runs performed at Re = 770 with an externally applied
transverse magnetic field with Bapl = 0.05 (‘series AB’). The second column
contains information about the final state of the system after the externally
applied magnetic field was switched off, where ‘–’ is a case with a decaying
magnetic field.

Run w/o Bapl Rm Emag Ekin Emag/Ekin B

AB0 – 43 0.01 0.70 0.01 0.13
AB1 – 47 0.01 0.73 0.02 0.16
AB2 – 68 0.10 0.51 0.20 0.45
AB3 – 77 0.13 0.44 0.30 0.51
AB4 – 81 0.15 0.40 0.39 0.55
AB5 A0 86 0.21 0.31 0.66 0.64
AB6 – 88 0.22 0.26 0.84 0.66
AB7 A2 89 0.23 0.27 0.83 0.67
AB8 A3 90 0.23 0.25 0.94 0.68
AB9 A4 107 0.26 0.22 1.19 0.72
AB10 A5 128 0.28 0.22 1.27 0.75
AB11 A6 150 0.30 0.23 1.28 0.77
AB12 A7 171 0.31 0.24 1.28 0.79

3.4.1. Parameter scan over Rm (series AB). Table 4 gives an overview of the runs performed
in series AB, a scan in Rm with a constant applied field. In all cases, the amplitude of the
external field was kept constant at Bapl = 0.05, which corresponds to approximately 6% of the
field amplitude during the self-excited run A8∗. Once a stationary state was reached, the time
integration was continued for one magnetic diffusion time. After that, the applied field was
switched off. The dynamo reached the corresponding states from series A as indicated in table 4,
except for run AB6, which showed a decaying magnetic field. The magnetic field amplitudes of
series AB are plotted in figure 4. For comparison, the respective values from series A and the
amplitude of the applied field are included.

3.4.2. Parameter scan over Bapl. Finally, we have repeated the run AB9 under variation of the
external field’s amplitude in order to find the minimum required field strength, which triggers the
dynamo transition. We refrain from listing numerical data in a table at this point but rather refer
to figure 5. Below the transition, the response amplitudes B of the system are linearly related to
the applied field Bapl. Point D which is defined by (Bapl = 3.78 × 10−3, B = 0.36) is marginally
below the dynamo transition. Switching off the external field during the stationary phase of run
D causes the magnetic field to decay. Starting from point E (Bapl = 5.04 × 10−3 and B = 0.70),
a flat-top indicates nonlinearly saturated dynamo states with the amplitude of simulation AB9.
When the applied field is turned off, state A4 is reached from the points E–AB9.

3.5. Convergence test at Re = 770 (series AA)

To check the validity of our results, we have repeated some of the runs from series A, keeping
nr = 480 fixed but using the higher spectral resolution nl = 80. Table 5 summarizes the results
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and allows for direct comparison with table 1. Due to the high computational demands of these
runs, the simulations during the statistically stationary states were performed for less than one
magnetic diffusion time which was sufficient to calculate averaged energies, but at the same
time too short to compute converging δ and δ2. Run AA3 at Rm = 90 is a ‘marginal’ dynamo
and therefore comparable to A1 at Rm = 88. It has a smaller magnetic field amplitude and might
therefore mark the lower limit of the hysteresis window Rm0 more accurately than A1. In any
case, this would be only a small correction of about 2%. The runs AA5 and AA5∗—located
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Table 5. Overview of the runs performed at Re = 770 (‘series AA’). The dynamo
run AA8∗ constitutes the initial condition for the quenched runs AA3 and AA5.

Run Rm Emag Ekin Emag/Ekin B

AA3 90 0.03 0.75 0.04 0.24
AA5 128 0.24 0.29 0.83 0.69
AA5∗ 128 0.00 0.80 0.00 0.00
AA8∗ 214 0.31 0.29 1.07 0.79

more central in the hysteresis window—agree well with the corresponding runs A5 and A5∗.
The self-excited dynamo AA8∗ shows minor differences in the energy partition compared with
run A8∗. For a comparison of the corresponding spectra, we refer to section 4.2. To conclude, the
runs of series A—and consequently of series B and C—are resolved sufficiently to demonstrate
the hysteresis effect.

4. Discussion

In order to better understand the dynamo action at Rm < Rmc, we now interpret and analyse
the associated phenomena more closely. Since the runs in series A show the widest hysteresis
cycle and are furthermore linked to series AB, we restrict ourselves to a detailed discussion
of series A if not stated otherwise. The key questions which arise are the following: why is
the system capable of sustaining dynamo action at magnetic Reynolds numbers well below the
dynamo threshold Rmc? What are the differences between these quenched dynamos and cases
at comparable Rm which do not self-excite from infinitesimal magnetic perturbations? What
characterizes the dynamos in the vicinity of Rm0 (e.g. A1 and A2) compared with simulations
at higher Rm? We define these cases as ‘marginal’ dynamos due to their location next to Rm0

and due to their reduced magnetic field amplitudes. Before these questions are addressed, the
nature of the dynamo bifurcation which is at the origin of the observed hysteretic behaviour is
discussed.

4.1. Subcritical dynamo bifurcation

In the quenched state, the dynamo maintains field amplification against ohmic dissipation in
a window Rm0 < Rm < Rmc, e.g. with Rm0 ≈ 0.44Rmc in series A. This happens due to a
finite amplitude perturbation, which is initially given by the saturated magnetic state of the
self-excited, turbulent dynamo at Rm > Rmc or by the externally applied field. As a result, the
system obeys a hysteresis cycle. This behaviour, observed in the runs A1–A7, is evidence of
global subcriticality [14] (cf also the references therein). This effect was recently discovered
in the turbulent, unbounded TG dynamo [14]. Our studies show that global subcriticality is
also present in a less idealized, turbulent dynamo model within a finite, spherical domain. A
comparison of both systems will be drawn in section 4.6.

Figure 6 provides an overview of the part of the Re–Rm parameter space, which we have
explored in the present study by performing the runs in series A–C. The stability curve Rmc rises
roughly linearly in the covered regime. The lower limit of the subcritical dynamo window Rm0

rises linearly as well, but with a smaller slope. As a result, the width of the window increases
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with Re. In addition, we have included the dynamo threshold of the mean flow Rmc(V̄ ). The
underlying V̄ was computed by time averaging during the non-dynamo runs. The physical
mechanisms which govern these stability curves are the focus of ongoing studies. In the present
context, the question if the lower threshold Rm0 saturates with the proposed saturation of Rmc

will be in particular interesting to address.

4.2. Energy spectra of the velocity fields

It is plausible that changes to the flow constitute the memory of the system after the quenching
is applied, causing subcritical dynamo action. To check this hypothesis, we have calculated
time-averaged energy spectra of the turbulent velocity fields in the simulations A1 (marginal
dynamo), A5 (dynamo), A5∗ (no dynamo) and A8∗ (self-excited dynamo). The spectra were
normalized to unity. Figure 7 shows the result in terms of spherical harmonic degree l and
order m. In each case, the spectrum is dominated by the axisymmetric (m = 0), two-cell (l = 2)
component induced by the forcing.

The non-dynamo run A5∗ has the flattest spectrum, indicative of turbulent fluctuations
over a broad range of spatial scales. In the dynamo runs A5 and A8∗, the kinetic energy is
concentrated at lower mode numbers, consistent with the backreaction of the Lorentz force
suppressing small-scale turbulent fluctuations. The upper part (l > 12) of the l-spectrum of the
marginal state A1 is flatter than the spectra in the dynamo runs, but at the same time steeper
than the spectrum in simulation A5∗.

In conclusion, the relatively higher amount of energy at small scales in simulation A5∗ is
likely to be the reason why the flow does not self-excite from an infinitesimal seed field. This
interpretation is consistent with the idea of an increased magnetic diffusivity due to turbulent
mixing (‘β-effect’), which effectively increases Rmc [30].

Figure 8 shows time-averaged spectra of the velocity fields from series AA, which was
performed to check the results of series A. At low wavenumbers, no significant differences can

New Journal of Physics 11 (2009) 013027 (http://www.njp.org/)

http://www.njp.org/


14

10–3

10–2

10–1

100

 0  5  10  15  20

K
in

et
ic

 e
ne

rg
y

Legendre polynomial degree l

A1
A5
A5*
A8*

10–5

10–4

10–3

10–2

10–1

100

 0  5  10  15  20

Order m

A1
A5
A5*
A8*

Figure 7. Time-averaged spectra of the velocity fields during the runs A1, A5,
A5∗ and A8∗. The spectra are normalized by the total energy.

10–6

10–5

10–4

10–3

10–2

10–1

100

 0  10  20  30  40  50  60  70  80

K
in

et
ic

 e
ne

rg
y

Legendre polynomial degree l

AA3
AA5
AA5*
AA8*

10–9
10–8
10–7
10–6
10–5
10–4
10–3
10–2
10–1
100

 0  10  20  30  40  50  60  70  80

Order m

AA3
AA5
AA5*
AA8*

Figure 8. Time-averaged spectra of the velocity fields during the runs AA3, AA5,
AA5∗ and AA8∗, which were performed to check the validity of the solutions in
series A. The spectra are normalized by the total energy.

be observed. The tails of the spectra in figure 7 are flatter; however, the qualitative behaviour is
in good agreement.

4.3. Intensity of turbulent fluctuations

In addition, we have analysed fluctuation properties of the turbulence in the runs of series A.
Following [26, 31], two measures are used to globally quantify the level of turbulent fluctuations
of a variable A:

δ =
〈A2〉

〈Ā2〉
, δ2 =

√
〈A2〉2 − 〈A2〉

2

〈A2〉
. (7)

Similar to the ‘turbulence intensity’ measured at a single point in space, the ‘noise intensity’
δ quantifies the intensity of the turbulent fluctuations globally in the volume under consideration.
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Here, the overline denotes averaging in time, the angle brackets averaging in space. The quantity
(δ − 1) is the ratio of the energy in the fluctuations to the energy in the mean field. The variable
δ2 represents the variability of the fluctuations of energy.

In table 1, we have compiled δ and δ2 associated with the velocity and the magnetic fields.
Compared with the values of δ(v), which are less than 1.5 in all cases, the variable δ(B) exhibits
somewhat larger values during the runs A3–A7, with the largest value δ(B) ≈ 2.4 in simulation
A5. During the runs A1 and A2, however, the magnetic fields undergo stronger fluctuations,
which is indicated by the numerical values of δ(B) ≈ 10.2 and δ(B) ≈ 5.3, respectively. Given
the distinct features of the time-averaged magnetic field in figure 9 below, panels (b) and (d),
which were created from the same data set consisting of ∼5000 field snapshots sampled over
nearly three magnetic diffusion times, these large values cannot be caused by inappropriately
short statistics in time. The strong fluctuations are likely to be a general feature of the magnetic
field during the marginal dynamo states A1 and A2, linked to a relatively weak backreaction of
the magnetic field on the turbulent flow.

4.4. Spatial structure of the magnetic and velocity fields

We have analysed the spatial structure of the time-averaged fields associated with the quasi-
stationary states of the runs in series A. The fields corresponding to the marginal dynamos A1
and A2 show peculiar features distinct from the simulations A3–A8∗. Below, we focus on a
comparison between the marginal dynamo A1 and the self-excited dynamo A8∗ to work out the
characteristics of these states. For that purpose, we have computed time-averaged fields during
the quasi-stationary phases. The averaging was performed over several hundred eddy turnover
times, which correspond to several magnetic diffusion times, in order to smooth out fluctuations
and to assure proper statistics. For visualization purposes, the time-averaged fields were then
normalized to unity.

Figure 9 provides a comparison of the magnetic fields. In both cases, the magnetic field is
dominated by the (l = 1 and m = 1) equatorial dipole mode, which is evident from the panels
(a) and (b). However, the fields differ in several ways. In the quenched state A1, panel (b),
the poloidal field is more concentrated near the equator. Furthermore, the points encircled by
magnetic field lines are located closer to the poles, compared with the unquenched state A8∗,
panel (a). Apart from that, the contours of toroidal flux are differently shaped, and the maxima of
toroidal flux are located on contours of opposite sign, when contrasting panel (a) with panel (b).
The distinction of the two states is more striking when contours of the modulus of the magnetic
field are plotted, as it is done in panels (c) and (d). In the unquenched state A8∗, panel (c), the
magnetic field amplitude is concentrated on defined areas around the forcing (for details, we
refer to figure 10 below, which illustrates the velocity fields), whereas there are comparatively
low amplitudes on the equatorial plane. In case A1, panel (d), the magnetic field is more
diffused, which results in coherent structures connecting both hemispheres. Separated, coherent
structures are located next to the poles. These findings are confirmed by panels (e) and (f) that
show volume renderings of the magnetic energy density. We attribute this observation to the
relatively larger magnetic diffusivity present in run A1 compared with run A8∗.

Figure 10 displays the time-averaged flows during the runs A1 and A8∗. Panel (a) shows the
velocity field during the saturated phase of the unquenched run A8∗, the cross section is aligned
with the magnetic dipole. The same is shown in panel (b) for the quenched run A1. Panel (c)
shows the same mean flow as panel (a), but with the cross section rotated by π/2, indicating
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that the rotational symmetry of the mean flow is broken due to the action of the Lorentz force
associated with the m = 1 dipole. As a result, the mean velocity field in run A8∗ obeys an m = 2
symmetry. Caused by the relatively smaller backreaction of the magnetic field in case A1, its
mean flow appears rotationally symmetric. For comparison, the rotationally symmetric mean
flow associated with the non-dynamo run A5∗ is displayed in panel (d). Panels (e) and (f) show
the spatial distribution of the kinetic energy density during the runs A8∗ and A1, confirming the
m = 2 and rotational symmetries of the flows, respectively.

A direct comparison of the panels (b) and (d) gives evidence that the subcritical dynamo
action in run A1, and the suppression of self-excitation from infinitesimal magnetic fields in
run A5∗, respectively, cannot be explained by modifications to the mean flow. Consequently,
the essential changes to the flow in the quenched dynamo state A1 must be small scale and
time-dependent and smoothed out by the computation of the mean flows. This is consistent with
the findings from section 4.2, where it was shown that the corresponding spectra differ at small
scales.

Beyond the insight gained by visual impression, the previously discussed investigations
reveal several characteristics of the marginal dynamo in the vicinity of Rm0 (runs A1 and A2),
which are distinct from the dynamo cases at higher Rm (runs A3–A8∗). Firstly, the time traces
in figure 1, panels (b) and (c), differ from the cases A3 and A5, panels (d) and (e), concerning
their amplitudes and fluctuations. This point also becomes apparent in the hysteresis diagram,
figure 2. Secondly, the kinetic energy spectrum of run A1 is located in between the dynamo and
non-dynamo runs at small scales (large l). Thirdly, the dynamos A1 and A2 are characterized
by stronger fluctuations of their magnetic fields, as an analysis of δ(B) showed.

4.5. Simulations with externally applied magnetic fields

In the previously discussed series A–C, the finite amplitude perturbation that causes subcritical
dynamo action is given by the saturated state of a self-excited dynamo. As series AB shows,
the latter can be replaced by an externally applied magnetic field, which is parallel to the
preferred magnetic mode. As soon as the field is turned off, the dynamo changes its state to the
corresponding points of series A. An exception is point A1, which was not reached from point
AB6. This indicates that the marginal states in the vicinity of Rm0 are likely to be metastable.

Starting from point AB12 and going to AB8 in figure 4, the magnetic field amplitudes from
series AB follow the hysteresis curve from series A when Rm > Rm0. The behaviour changes
below Rm0, where the amplitudes of the runs AB7 to AB0 do not fall back to the amplitude
of the applied field instantly, but rather decrease roughly linearly with a steeper slope. In this
regime, the applied field is still amplified, but the flow does not act as a self-sustaining dynamo
when the external field is switched off.

We have also studied the role of the orientation of the external field. Instead of m = 1
transverse field applied in series AB, we have performed runs at Re = 770 with an applied
m = 0, axial field of equal strength. When the external field is deactivated after a transient, the
magnetic fields decay in cases with Rm < 150 (cf Rm < 89 in series AB). Above this value,
states on the hysteresis curve of series A are reached.

Finally, we turn towards a discussion of the minimum field strength required to trigger
subcritical dynamo action. For that purpose, a parameter scan over Bapl was performed while
keeping Re and Rm fixed at the values of run AB9. Below the transition, the field amplitude
in the system is a linear function of the applied field strength as indicated by the straight
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line in figure 5. Point E marks the critical amplitude Bapl,c of the applied field above which
nonlinearly saturated dynamo states are reached. The dynamo transition at Rm0 < Rm < Rmc

in the presence of finite amplitude external fields is therefore governed by a supercritical
bifurcation. The numerical value Bapl,c = 5.0 × 10−3 is about 0.7% of the total field amplitude
reached during the saturated state of run AB9.

It is interesting to relate this dimensionless value to the Madison dynamo experiment.
Assuming a sphere of radius r = 0.5 m filled with liquid sodium, it translates to a field of
Bapl,c ≈ 1.72 × 10−3 T. In the actual experiment, the Reynolds number is three to four orders
of magnitude larger which will—apart from other effects, which are not captured in the
simulation—likely to be causing a higher critical amplitude Bapl,c.

4.6. Comparison with the TG dynamo model

In recent years, the turbulent TG dynamo was the subject of extensive numerical studies
[11, 14, 26, 27, 31]. These works were partly motivated by the structural similarity of the
TG flow with von Kármán-type experimental swirling flows. The simulations were carried out
on three-dimensional (3D) periodic Cartesian grids, which allow the use of efficient pseudo-
spectral codes. However, no physical boundaries were considered so far. Therefore, it is
interesting to compare the results of these studies with the findings from our model. In addition
to the geometric differences, two important differences arise in the boundary conditions:
firstly, the no-slip condition on velocity introduces shear layers that are not present in the TG
simulations, and secondly, the magnetic field matches to a vacuum solution.

The mean flow V̄ changes in our model when Re is increased which is mainly caused by a
hydrodynamic instability localized in the boundary layer. As a result, the associated kinematic
threshold Rmc(V̄ ) rises weakly with Re, as shown in figure 6. On the contrary, the values
of Rmc(V̄ ) in the TG case, which limit two separate dynamo windows (a feature which is
not present in our model), are only marginally dependent on Re [27]. The lower limit of the
hysteresis cycle which is located close to the lower limit of the first kinematic dynamo window
shows a similar behaviour.

Compared with DNS data of the unbounded TG flow (as discussed in [26, 31]), the
turbulent s2t2 velocity field in the sphere is characterized by a comparatively low noise
intensity, with δ(v, Re = 770) < 1.5. This is the case throughout the computationally accessible
regime and likely to be attributed to the presence of the physical boundary, which constrains the
extents of large-scale fluctuations, as visualizations confirm. For the TG case, a monotonically
increasing δ(v) with δ(v, Re = 10) ≈ 1.5 and δ(v, Re = 100) ≈ 3.0 is reported [26, 31].
Moreover, the saturation of the δ(v) curve at higher Re was found to be connected to the
saturation of the stability curve Rmc—a scenario which we cannot confirm in our model.

In [14], a dynamo with ‘on–off’ behaviour is reported in the vicinity of the lower limit
Rm0 of the hysteresis cycle when a magnetic field is applied. However, we do not find this
type of dynamo action during the runs performed in series AB. Given the 3D parameter space
spanned by Re, Rm and Bapl, it is nevertheless possible that ‘on–off,’ or intermittent dynamo
action exists in our model.

Finally, we compare the dynamo states located next to the lower threshold of the hysteresis
cycle. In our model, the relatively larger magnetic diffusivity in the marginal dynamo run
leads to a less localized magnetic field compared with simulations at higher Rm. However, the
magnetic field is a transverse dipole in all cases. In [14], a remarkable change of the magnetic

New Journal of Physics 11 (2009) 013027 (http://www.njp.org/)

http://www.njp.org/


20

field’s orientation and energy distribution is reported to occur in the vicinity of Rm0, which the
authors link to the dynamo mode in the lower kinematic window of the TG flow.

5. Summary

In this paper, we have numerically shown the existence of a hysteresis cycle of dynamo action
in a turbulent, spherically bounded flow at Pm < 1. The flow is driven by a constant body force
resulting in a mean flow, which consists of two counter-rotating vortices as is the case in the
Madison dynamo experiment. The hysteretic behaviour was explored by suddenly decreasing
(‘quenching’) the magnetic Reynolds number Rm below the dynamo threshold Rmc, starting
from the saturated state of a self-excited dynamo (Rm > Rmc), following and extending work
based on the TG flow in an infinite, periodic box [14]. This hysteretic behaviour is evidence that
the dynamo transition is governed by a subcritical bifurcation.

At Re = 770, the quenched system is capable of sustaining dynamo action down to
Rm0 ≈ 88, which is approximately 44% of the critical magnetic Reynolds number above which
self-excitation from infinitesimal seed fields occurs. We find that the flow exhibits two magnetic
field configurations in a time-averaged sense, which are both characterized by an equatorial
dipole. One mode, which is also the characteristic mode of the self-excited dynamo, appears in
a broad range of the quenched regime, down to Rm ≈ 90. Reducing Rm slightly, one finds the
second-dynamo state in a narrow window 88. Rm . 89. This state is found to be characterized
by a smaller field amplitude, by stronger fluctuations, by a changed mean flow, and, on average,
by a less localized spatial distribution of the magnetic energy density. The hysteresis behaviour
is linked to changes in the turbulent flow, induced by the Lorentz force. Spectra of kinetic energy
indicate that the dynamics at intermediate and small scales hinder dynamo action, since these
scales are damped during the quenched runs where dynamo action is sustained. The subcritical
bifurcation was also studied at lower Reynolds numbers (Re = 410 and 178). It was found that
the width Rmc–Rm0 of the cycle decreases when going to lower Re.

In addition, the system’s behaviour was studied in the presence of applied, finite amplitude
magnetic fields. It was shown in simulations at Re = 770 that an applied equatorial magnetic
field is amplified when Rm < Rmc. With Rm > Rm0, the magnetic field amplitude in the
system is similar to the field strength observed in the previously discussed hysteresis runs.
Reducing Rm below Rm0 causes the field amplitude to decrease at a steeper slope than the
hysteresis curve. Furthermore, when the applied field is turned off in the simulations, the states
on the hysteresis curve are reached when Rm > Rm0, otherwise the magnetic field decays. This
result is of obvious interest for dynamo experiments where external fields can be applied via
coils. It corresponds to an effective reduction of the critical magnetic Reynolds number.
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